본문 바로가기
728x90

Python for Beginners120

16.3 멀티스레딩 및 병렬 처리 파이썬에서 멀티스레딩과 병렬 처리는 동시에 여러 작업을 처리하도록 프로그램을 구성하는 방법입니다. 멀티스레딩은 여러 스레드를 사용하여 실행 중인 프로세스 내에서 동시성을 제공하며, 병렬 처리는 여러 프로세스를 동시에 실행하여 처리합니다. 파이썬에서는 `threading` 모듈을 사용하여 멀티스레딩을 구현할 수 있습니다. 또한, `concurrent.futures` 모듈을 사용하여 멀티스레딩 및 멀티프로세싱을 추상화하여 구현할 수 있습니다. 멀티스레딩 예시 import threading import time def worker_thread(number): print(f"Thread {number} started") time.sleep(2) # 예를 들어, 2초 동안 작업하는 스레드를 가정합니다. print.. 2023. 5. 8.
16.2 코드 최적화 기법 코드 최적화란 코드의 실행 속도를 높이고 메모리 사용량을 줄이는 과정입니다. 파이썬에서 코드 최적화 기법을 적용하면 프로그램의 성능을 향상시킬 수 있습니다. 여기에 몇 가지 코드 최적화 기법과 예시를 소개합니다. 1. 루프 최적화: 루프는 프로그램의 실행 시간에 큰 영향을 미치는 요소입니다. 루프의 개수를 줄이거나 내부 연산을 최적화하면 성능이 향상됩니다. 예시코드: # 최적화 전 result = [] for i in range(100): if i % 2 == 0: result.append(i * i) # 최적화 후 result = [i * i for i in range(0, 100, 2)] 2. 내장 함수 사용: 파이썬 내장 함수는 일반적으로 C로 구현되어 있어 빠른 실행 속도를 제공합니다. 가능한 경.. 2023. 5. 8.
16.1 프로파일링 프로파일링은 코드의 실행 시간과 메모리 사용량을 측정하여 성능을 분석하고 최적화할 수 있는 도구입니다. 파이썬에서는 내장된 `cProfile`, `profile`, `timeit` 모듈 등을 사용하여 프로파일링을 수행할 수 있습니다. 또한, `memory_profiler`와 같은 외부 라이브러리도 사용할 수 있습니다. 1. `cProfile`: `cProfile`은 파이썬의 표준 프로파일러로, 함수 호출 횟수와 각 함수의 실행 시간을 측정할 수 있습니다. 예시코드: import cProfile import re def example_function(): s = 0 for i in range(10000): s += i return s def main(): example_function() cProfile... 2023. 5. 8.
15.5 강화학습 기반 딥러닝(DQN, A3C 등) 강화학습(Reinforcement Learning)은 에이전트가 환경과 상호작용하며, 보상을 최대화하는 행동을 학습하는 방법입니다. 강화학습은 다양한 분야에서 사용되며, 최근에는 딥러닝과 결합하여 높은 성능을 보이고 있습니다. DQN(Deep Q-Network)과 A3C(Asynchronous Advantage Actor-Critic)는 딥러닝 기반 강화학습 알고리즘 중 가장 유명한 두 가지입니다. 1. DQN(Deep Q-Network): DQN은 Q-Learning 알고리즘과 딥러닝을 결합한 알고리즘입니다. Q-Learning은 상태-행동 쌍에 대한 가치를 추정하는 Q함수를 사용합니다. DQN은 Q함수를 근사하는 신경망을 사용하며, 경험 리플레이(Experience Replay)와 타겟 네트워크(Ta.. 2023. 5. 2.
15.4 자연어 처리(NLP, RNN, LSTM, Transformer) 자연어 처리(Natural Language Processing, NLP)는 컴퓨터가 인간의 언어를 이해하고 처리하는 기술입니다. 자연어 처리의 주요 작업으로는 텍스트 분류, 감성 분석, 기계 번역, 요약, 질문 응답 등이 있습니다. 이러한 작업을 수행하기 위해 다양한 딥러닝 모델이 사용되며, 주요한 모델로는 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory), GRU(Gated Recurrent Unit), Transformer 등이 있습니다. 1. RNN(Recurrent Neural Networks)은 순차적인 데이터를 처리하기 위해 설계된 신경망입니다. RNN은 순환 구조를 가지며, 이전 시점의 은닉 상태 정보를 다음 시점의 입력에 전달함으로.. 2023. 5. 2.
15.3 컴퓨터 비전(CNN) 컴퓨터 비전은 이미지와 비디오에서 유용한 정보를 자동으로 추출하는 기술입니다. 컨볼루션 신경망(Convolutional Neural Networks, CNN)은 이미지 인식 및 분류와 같은 컴퓨터 비전 작업에 탁월한 성능을 보이는 딥러닝 모델입니다. CNN은 지역적인 정보를 인식하고 학습하는 데 효과적인 컨볼루션 레이어와 풀링 레이어를 사용하여 이미지의 특징을 추출합니다. 다음은 TensorFlow와 Keras를 사용하여 간단한 CNN 모델을 구성하고 학습시키는 예제 코드입니다. 이 예제에서는 CIFAR-10 데이터셋을 사용하여 이미지 분류를 수행합니다. import tensorflow as tf from tensorflow.keras import layers, models from tensorflow... 2023. 5. 2.
15.2 텐서플로와 케라스 TensorFlow와 Keras는 파이썬을 사용한 딥러닝에 널리 사용되는 프레임워크입니다. TensorFlow는 Google에서 개발한 오픈소스 딥러닝 프레임워크로, 텐서 연산과 그래프 기반 계산을 통해 효율적으로 딥러닝 모델을 구현할 수 있습니다. TensorFlow는 CPU와 GPU를 모두 지원하며, 분산 컴퓨팅 환경에서도 사용할 수 있습니다. TensorFlow는 유연성과 성능을 모두 갖춘 딥러닝 프레임워크로 알려져 있습니다. Keras는 TensorFlow를 기반으로 하는 고수준 딥러닝 API로, 간결하고 쉬운 문법으로 신속하게 딥러닝 모델을 구현할 수 있습니다. Keras는 다양한 딥러닝 모델을 쉽게 구성할 수 있는 모듈화된 구조를 제공하며, 사용자 친화적인 인터페이스를 제공합니다. Tensor.. 2023. 5. 2.
15.1 딥러닝 소개 딥러닝은 인공신경망(Artificial Neural Networks, ANN)을 사용하여 표현 학습(representation learning)을 수행하는 기계학습의 한 분야입니다. 딥러닝은 다양한 층(layer)으로 구성된 인공신경망을 사용하여 입력 데이터에서 복잡한 패턴을 학습하고, 이를 분류, 회귀, 생성 등의 문제에 적용할 수 있습니다. 딥러닝은 컴퓨터 비전, 자연어 처리, 음성 인식, 추천 시스템 등 다양한 분야에서 뛰어난 성능을 발휘하고 있습니다. 파이썬에서 딥러닝을 사용하려면 TensorFlow와 Keras, PyTorch 등의 딥러닝 프레임워크를 사용할 수 있습니다. 예제: Keras를 사용한 기본적인 이미지 분류 이 예제에서는 Keras를 사용하여 Fashion MNIST 데이터셋에 대한.. 2023. 4. 27.
14.5 강화학습 강화학습(Reinforcement Learning)은 에이전트(agent)가 환경(environment)과 상호작용하면서 보상(reward)을 최대화하는 방식으로 학습하는 기계학습의 한 분야입니다. 에이전트는 특정 상태(state)에서 행동(action)을 취하고, 환경은 에이전트에게 보상을 제공합니다. 에이전트의 목표는 시간에 따른 총 보상의 합을 최대화하는 최적의 정책(policy)를 학습하는 것입니다. 예제: OpenAI Gym을 사용한 Q-러닝(Q-Learning) 이 예제에서는 OpenAI Gym을 사용하여 간단한 강화학습 문제를 해결해보겠습니다. OpenAI Gym은 강화학습 연구를 위한 다양한 환경을 제공하는 라이브러리입니다. 여기서는 'FrozenLake-v0' 환경을 사용하여 Q-러닝 알.. 2023. 4. 25.
728x90