728x90 Mathematical Induction1 수학적 귀납법(Mathematical Induction) 수학적 귀납법(Mathematical Induction)은 일련의 명제들이 모두 참이라는 것을 증명하는 데 사용되는 강력한 수학적 기법입니다. 이 기법은 특히 자연수 집합에 대한 명제를 다룰 때 유용하며, 귀납법의 주요 생각은 "도미노 효과"에 비유할 수 있습니다. 귀납법을 이해하려면 귀납법의 두 가지 주요 단계, 즉 "기초 단계"와 "귀납 단계"를 이해하는 것이 중요합니다. 1. 기초 단계 (Base Step): 귀납법의 첫 번째 단계는 명제가 가장 간단한 경우, 즉 n=1일 때 참임을 보이는 것입니다. 이 단계에서는 주어진 문제를 가장 간단한 형태로 끓여내고 그것이 참임을 확인합니다. 예를 들어, 합의 공식 1+2+...+n = n(n+1)/2의 경우 n=1을 대입하면 1=1*(1+1)/2가 되어 참.. 2023. 5. 26. 이전 1 다음 728x90